3.574 \(\int \frac{(a+b \tan (c+d x))^3}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=245 \[ \frac{(a-b) \left (a^2+4 a b+b^2\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d}-\frac{(a-b) \left (a^2+4 a b+b^2\right ) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d}+\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}} \]

[Out]

((a - b)*(a^2 + 4*a*b + b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a - b)*(a^2 + 4*a*b + b^2
)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) + ((a + b)*(a^2 - 4*a*b + b^2)*Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - ((a + b)*(a^2 - 4*a*b + b^2)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + T
an[c + d*x]])/(2*Sqrt[2]*d) - (16*a^2*b)/(3*d*Sqrt[Tan[c + d*x]]) - (2*a^2*(a + b*Tan[c + d*x]))/(3*d*Tan[c +
d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.311717, antiderivative size = 245, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {3565, 3628, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{(a-b) \left (a^2+4 a b+b^2\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d}-\frac{(a-b) \left (a^2+4 a b+b^2\right ) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d}+\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[c + d*x])^3/Tan[c + d*x]^(5/2),x]

[Out]

((a - b)*(a^2 + 4*a*b + b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a - b)*(a^2 + 4*a*b + b^2
)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) + ((a + b)*(a^2 - 4*a*b + b^2)*Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - ((a + b)*(a^2 - 4*a*b + b^2)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + T
an[c + d*x]])/(2*Sqrt[2]*d) - (16*a^2*b)/(3*d*Sqrt[Tan[c + d*x]]) - (2*a^2*(a + b*Tan[c + d*x]))/(3*d*Tan[c +
d*x]^(3/2))

Rule 3565

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3628

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(a+b \tan (c+d x))^3}{\tan ^{\frac{5}{2}}(c+d x)} \, dx &=-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2}{3} \int \frac{4 a^2 b-\frac{3}{2} a \left (a^2-3 b^2\right ) \tan (c+d x)-\frac{1}{2} b \left (a^2-3 b^2\right ) \tan ^2(c+d x)}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2}{3} \int \frac{-\frac{3}{2} a \left (a^2-3 b^2\right )-\frac{3}{2} b \left (3 a^2-b^2\right ) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 \operatorname{Subst}\left (\int \frac{-\frac{3}{2} a \left (a^2-3 b^2\right )-\frac{3}{2} b \left (3 a^2-b^2\right ) x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{3 d}\\ &=-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}-\frac{\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} d}+\frac{\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} d}-\frac{\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 d}-\frac{\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 d}\\ &=\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} d}-\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} d}-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d}+\frac{\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d}\\ &=\frac{(a-b) \left (a^2+4 a b+b^2\right ) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d}-\frac{(a-b) \left (a^2+4 a b+b^2\right ) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d}+\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} d}-\frac{(a+b) \left (a^2-4 a b+b^2\right ) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} d}-\frac{16 a^2 b}{3 d \sqrt{\tan (c+d x)}}-\frac{2 a^2 (a+b \tan (c+d x))}{3 d \tan ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [C]  time = 0.244666, size = 91, normalized size = 0.37 \[ \frac{-6 b^2 (a+b \tan (c+d x))+(a-i b)^3 \left (-\, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};i \tan (c+d x)\right )\right )-(a+i b)^3 \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};-i \tan (c+d x)\right )}{3 d \tan ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[c + d*x])^3/Tan[c + d*x]^(5/2),x]

[Out]

(-((a + I*b)^3*Hypergeometric2F1[-3/2, 1, -1/2, (-I)*Tan[c + d*x]]) - (a - I*b)^3*Hypergeometric2F1[-3/2, 1, -
1/2, I*Tan[c + d*x]] - 6*b^2*(a + b*Tan[c + d*x]))/(3*d*Tan[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.017, size = 473, normalized size = 1.9 \begin{align*} -{\frac{2\,{a}^{3}}{3\,d} \left ( \tan \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}}-6\,{\frac{b{a}^{2}}{d\sqrt{\tan \left ( dx+c \right ) }}}-{\frac{\sqrt{2}{a}^{3}}{2\,d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{3\,\sqrt{2}a{b}^{2}}{2\,d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{\sqrt{2}{a}^{3}}{2\,d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{3\,\sqrt{2}a{b}^{2}}{2\,d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{\sqrt{2}{a}^{3}}{4\,d}\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{3\,\sqrt{2}a{b}^{2}}{4\,d}\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }-{\frac{3\,\sqrt{2}{a}^{2}b}{4\,d}\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}{b}^{3}}{4\,d}\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }-{\frac{3\,\sqrt{2}{a}^{2}b}{2\,d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{\sqrt{2}{b}^{3}}{2\,d}\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{3\,\sqrt{2}{a}^{2}b}{2\,d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{\sqrt{2}{b}^{3}}{2\,d}\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^3/tan(d*x+c)^(5/2),x)

[Out]

-2/3/d*a^3/tan(d*x+c)^(3/2)-6*a^2*b/d/tan(d*x+c)^(1/2)-1/2/d*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*a^3+3/
2/d*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*a*b^2-1/2/d*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*a^3+3/2
/d*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*a*b^2-1/4/d*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/
(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a^3+3/4/d*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/
2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a*b^2-3/4/d*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^
(1/2)+tan(d*x+c)))*2^(1/2)*a^2*b+1/4/d*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+
tan(d*x+c)))*2^(1/2)*b^3-3/2/d*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*a^2*b+1/2/d*arctan(1+2^(1/2)*tan(d*x
+c)^(1/2))*2^(1/2)*b^3-3/2/d*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*a^2*b+1/2/d*arctan(-1+2^(1/2)*tan(d*x
+c)^(1/2))*2^(1/2)*b^3

________________________________________________________________________________________

Maxima [A]  time = 1.6465, size = 290, normalized size = 1.18 \begin{align*} -\frac{6 \, \sqrt{2}{\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) + 6 \, \sqrt{2}{\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) + 3 \, \sqrt{2}{\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \log \left (\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - 3 \, \sqrt{2}{\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \log \left (-\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \frac{8 \,{\left (9 \, a^{2} b \tan \left (d x + c\right ) + a^{3}\right )}}{\tan \left (d x + c\right )^{\frac{3}{2}}}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^3/tan(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

-1/12*(6*sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 6*sqrt
(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) + 3*sqrt(2)*(a^3 - 3
*a^2*b - 3*a*b^2 + b^3)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - 3*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^
2 + b^3)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 8*(9*a^2*b*tan(d*x + c) + a^3)/tan(d*x + c)^(3/
2))/d

________________________________________________________________________________________

Fricas [B]  time = 15.706, size = 17322, normalized size = 70.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^3/tan(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/12*(12*sqrt(2)*(d^5*cos(d*x + c)^2 - d^5)*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6
*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 +
15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b
^10 + b^12))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4)*sqrt((
a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4)*arctan(((a^24 - 6*a^22
*b^2 - 84*a^20*b^4 - 322*a^18*b^6 - 603*a^16*b^8 - 540*a^14*b^10 + 540*a^10*b^14 + 603*a^8*b^16 + 322*a^6*b^18
 + 84*a^4*b^20 + 6*a^2*b^22 - b^24)*d^4*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2
*b^10 + b^12)/d^4)*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^
4) - sqrt(2)*((a^3 - 3*a*b^2)*d^7*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10
+ b^12)/d^4)*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (
3*a^8*b + 8*a^6*b^3 + 6*a^4*b^5 - b^9)*d^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8
- 30*a^2*b^10 + b^12)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12
 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a
^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqr
t(((a^18 - 27*a^16*b^2 + 168*a^14*b^4 + 224*a^12*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^
14 - 27*a^2*b^16 + b^18)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^1
2)/d^4)*cos(d*x + c) + sqrt(2)*((3*a^14*b - 91*a^12*b^3 + 795*a^10*b^5 - 1611*a^8*b^7 + 1217*a^6*b^9 - 345*a^4
*b^11 + 33*a^2*b^13 - b^15)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 +
b^12)/d^4)*cos(d*x + c) - (a^21 - 30*a^19*b^2 + 249*a^17*b^4 - 280*a^15*b^6 - 1038*a^13*b^8 + 732*a^11*b^10 +
1322*a^9*b^12 - 504*a^7*b^14 - 531*a^5*b^16 + 82*a^3*b^18 - 3*a*b^20)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2
+ 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12
 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*
b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 1
5*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*
a^18*b^6 + 783*a^16*b^8 - 624*a^14*b^10 - 1748*a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^
4*b^20 - 24*a^2*b^22 + b^24)*sin(d*x + c))/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^
4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4) - sqrt(2)*((a^15 - 15*a^13*b^2 + 9*a^11*b^4 + 81*a^9*b^6 + 27*a^7*b^8 -
69*a^5*b^10 - 37*a^3*b^12 + 3*a*b^14)*d^7*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a
^2*b^10 + b^12)/d^4)*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/
d^4) - (3*a^20*b - 28*a^18*b^3 - 171*a^16*b^5 - 288*a^14*b^7 - 82*a^12*b^9 + 264*a^10*b^11 + 282*a^8*b^13 + 64
*a^6*b^15 - 33*a^4*b^17 - 12*a^2*b^19 + b^21)*d^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a
^4*b^8 - 30*a^2*b^10 + b^12)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10
 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^
8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^1
2))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 +
b^12)/d^4)^(3/4))/(a^36 - 18*a^34*b^2 - 39*a^32*b^4 + 848*a^30*b^6 + 5556*a^28*b^8 + 15240*a^26*b^10 + 20420*a
^24*b^12 + 5424*a^22*b^14 - 25938*a^20*b^16 - 42988*a^18*b^18 - 25938*a^16*b^20 + 5424*a^14*b^22 + 20420*a^12*
b^24 + 15240*a^10*b^26 + 5556*a^8*b^28 + 848*a^6*b^30 - 39*a^4*b^32 - 18*a^2*b^34 + b^36)) + 12*sqrt(2)*(d^5*c
os(d*x + c)^2 - d^5)*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3
*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10
 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*((a^12 + 6
*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4)*sqrt((a^12 - 30*a^10*b^2 + 25
5*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4)*arctan(-((a^24 - 6*a^22*b^2 - 84*a^20*b^4 - 3
22*a^18*b^6 - 603*a^16*b^8 - 540*a^14*b^10 + 540*a^10*b^14 + 603*a^8*b^16 + 322*a^6*b^18 + 84*a^4*b^20 + 6*a^2
*b^22 - b^24)*d^4*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*sqr
t((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + sqrt(2)*((a^3 - 3
*a*b^2)*d^7*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*sqrt((a^1
2 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^8*b + 8*a^6*b^3 +
6*a^4*b^5 - b^9)*d^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/
d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3
*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/
(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(((a^18 - 27*a^16*b^2
 + 168*a^14*b^4 + 224*a^12*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^14 - 27*a^2*b^16 + b^1
8)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) -
 sqrt(2)*((3*a^14*b - 91*a^12*b^3 + 795*a^10*b^5 - 1611*a^8*b^7 + 1217*a^6*b^9 - 345*a^4*b^11 + 33*a^2*b^13 -
b^15)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c
) - (a^21 - 30*a^19*b^2 + 249*a^17*b^4 - 280*a^15*b^6 - 1038*a^13*b^8 + 732*a^11*b^10 + 1322*a^9*b^12 - 504*a^
7*b^14 - 531*a^5*b^16 + 82*a^3*b^18 - 3*a*b^20)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*
b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8
*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 25
5*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6
 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*a^18*b^6 + 783*a^16*b^
8 - 624*a^14*b^10 - 1748*a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^4*b^20 - 24*a^2*b^22 +
 b^24)*sin(d*x + c))/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b
^12)/d^4)^(3/4) + sqrt(2)*((a^15 - 15*a^13*b^2 + 9*a^11*b^4 + 81*a^9*b^6 + 27*a^7*b^8 - 69*a^5*b^10 - 37*a^3*b
^12 + 3*a*b^14)*d^7*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*s
qrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^20*b - 28*
a^18*b^3 - 171*a^16*b^5 - 288*a^14*b^7 - 82*a^12*b^9 + 264*a^10*b^11 + 282*a^8*b^13 + 64*a^6*b^15 - 33*a^4*b^1
7 - 12*a^2*b^19 + b^21)*d^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 +
 b^12)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b -
 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)
/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/
cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4))/(a^3
6 - 18*a^34*b^2 - 39*a^32*b^4 + 848*a^30*b^6 + 5556*a^28*b^8 + 15240*a^26*b^10 + 20420*a^24*b^12 + 5424*a^22*b
^14 - 25938*a^20*b^16 - 42988*a^18*b^18 - 25938*a^16*b^20 + 5424*a^14*b^22 + 20420*a^12*b^24 + 15240*a^10*b^26
 + 5556*a^8*b^28 + 848*a^6*b^30 - 39*a^4*b^32 - 18*a^2*b^34 + b^36)) + 3*sqrt(2)*((a^12 + 6*a^10*b^2 + 15*a^8*
b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d*cos(d*x + c)^2 - (a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6
*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d - 2*((3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^3*cos(d*x + c)^2 - (3*a^5*b -
 10*a^3*b^3 + 3*a*b^5)*d^3)*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12
)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a
^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)
)/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*((a^12 + 6*a^10*b^2 + 1
5*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4)*log(((a^18 - 27*a^16*b^2 + 168*a^14*b^4 +
224*a^12*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^14 - 27*a^2*b^16 + b^18)*d^2*sqrt((a^12
+ 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) + sqrt(2)*((3*a^14*
b - 91*a^12*b^3 + 795*a^10*b^5 - 1611*a^8*b^7 + 1217*a^6*b^9 - 345*a^4*b^11 + 33*a^2*b^13 - b^15)*d^3*sqrt((a^
12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) - (a^21 - 30*a^1
9*b^2 + 249*a^17*b^4 - 280*a^15*b^6 - 1038*a^13*b^8 + 732*a^11*b^10 + 1322*a^9*b^12 - 504*a^7*b^14 - 531*a^5*b
^16 + 82*a^3*b^18 - 3*a*b^20)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 +
 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6
+ 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2
*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*
a^2*b^10 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*a^18*b^6 + 783*a^16*b^8 - 624*a^14*b^10
- 1748*a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^4*b^20 - 24*a^2*b^22 + b^24)*sin(d*x + c
))/cos(d*x + c)) - 3*sqrt(2)*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d
*cos(d*x + c)^2 - (a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d - 2*((3*a^5
*b - 10*a^3*b^3 + 3*a*b^5)*d^3*cos(d*x + c)^2 - (3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^3)*sqrt((a^12 + 6*a^10*b^2
+ 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^
6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a
^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 +
255*a^4*b^8 - 30*a^2*b^10 + b^12))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b
^12)/d^4)^(1/4)*log(((a^18 - 27*a^16*b^2 + 168*a^14*b^4 + 224*a^12*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6
*b^12 + 168*a^4*b^14 - 27*a^2*b^16 + b^18)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8
+ 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) - sqrt(2)*((3*a^14*b - 91*a^12*b^3 + 795*a^10*b^5 - 1611*a^8*b^7 + 1217
*a^6*b^9 - 345*a^4*b^11 + 33*a^2*b^13 - b^15)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b
^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) - (a^21 - 30*a^19*b^2 + 249*a^17*b^4 - 280*a^15*b^6 - 1038*a^13*b^8
+ 732*a^11*b^10 + 1322*a^9*b^12 - 504*a^7*b^14 - 531*a^5*b^16 + 82*a^3*b^18 - 3*a*b^20)*d*cos(d*x + c))*sqrt((
a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 + 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b
^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a
^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^1
2 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 +
90*a^20*b^4 + 648*a^18*b^6 + 783*a^16*b^8 - 624*a^14*b^10 - 1748*a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 64
8*a^6*b^18 + 90*a^4*b^20 - 24*a^2*b^22 + b^24)*sin(d*x + c))/cos(d*x + c)) + 8*((a^15 + 6*a^13*b^2 + 15*a^11*b
^4 + 20*a^9*b^6 + 15*a^7*b^8 + 6*a^5*b^10 + a^3*b^12)*cos(d*x + c)^2 + 9*(a^14*b + 6*a^12*b^3 + 15*a^10*b^5 +
20*a^8*b^7 + 15*a^6*b^9 + 6*a^4*b^11 + a^2*b^13)*cos(d*x + c)*sin(d*x + c))*sqrt(sin(d*x + c)/cos(d*x + c)))/(
(a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d*cos(d*x + c)^2 - (a^12 + 6*a^
10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \tan{\left (c + d x \right )}\right )^{3}}{\tan ^{\frac{5}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**3/tan(d*x+c)**(5/2),x)

[Out]

Integral((a + b*tan(c + d*x))**3/tan(c + d*x)**(5/2), x)

________________________________________________________________________________________

Giac [A]  time = 2.38465, size = 360, normalized size = 1.47 \begin{align*} -\frac{{\left (\sqrt{2} a^{3} + 3 \, \sqrt{2} a^{2} b - 3 \, \sqrt{2} a b^{2} - \sqrt{2} b^{3}\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right )}{2 \, d} - \frac{{\left (\sqrt{2} a^{3} + 3 \, \sqrt{2} a^{2} b - 3 \, \sqrt{2} a b^{2} - \sqrt{2} b^{3}\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right )}{2 \, d} - \frac{{\left (\sqrt{2} a^{3} - 3 \, \sqrt{2} a^{2} b - 3 \, \sqrt{2} a b^{2} + \sqrt{2} b^{3}\right )} \log \left (\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )}{4 \, d} + \frac{{\left (\sqrt{2} a^{3} - 3 \, \sqrt{2} a^{2} b - 3 \, \sqrt{2} a b^{2} + \sqrt{2} b^{3}\right )} \log \left (-\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )}{4 \, d} - \frac{2 \,{\left (9 \, a^{2} b \tan \left (d x + c\right ) + a^{3}\right )}}{3 \, d \tan \left (d x + c\right )^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^3/tan(d*x+c)^(5/2),x, algorithm="giac")

[Out]

-1/2*(sqrt(2)*a^3 + 3*sqrt(2)*a^2*b - 3*sqrt(2)*a*b^2 - sqrt(2)*b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(
d*x + c))))/d - 1/2*(sqrt(2)*a^3 + 3*sqrt(2)*a^2*b - 3*sqrt(2)*a*b^2 - sqrt(2)*b^3)*arctan(-1/2*sqrt(2)*(sqrt(
2) - 2*sqrt(tan(d*x + c))))/d - 1/4*(sqrt(2)*a^3 - 3*sqrt(2)*a^2*b - 3*sqrt(2)*a*b^2 + sqrt(2)*b^3)*log(sqrt(2
)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1)/d + 1/4*(sqrt(2)*a^3 - 3*sqrt(2)*a^2*b - 3*sqrt(2)*a*b^2 + sqrt(2)*b^
3)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1)/d - 2/3*(9*a^2*b*tan(d*x + c) + a^3)/(d*tan(d*x + c)^(3
/2))